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Consider the two simultaneou
QX +a 12Y J

(¥ scanned with OKEN Scanner




(¥ Scanned with OKEN Scanner




: erminant wit
~milarly, the expansion of the det twith Teg
Similarly possible g5 :

s or columns is ey ',
other Tow A =ag Agy g9 A2[2 ‘1123 A23 t Determinants 7
with respect ‘
Seeq Sol. Let 12 3
and A = aygAiat 28 Agg + a3 Agy l\d 1‘0\\/] | " g "5 8
(with respect ¢, ths | e
1 ,
[LLUSTRATIVE EXAMPLES | = 5-0-3 o
; 1l the cofactors of ¢
Example 1.1. Find all f f the dete”nin | Ay = (-1t+2 Mp=-|4 6
1-2 Qny 7 -1
-1 -3’ . = -(-4-42) =45
1 - 1+3 _
Sol. Let A=1_4 _2’ Ay = (-1 My, = | g‘
Cofactors of the element 11is =0+35=35
1+1 Apy = (12 Ty = |2 3
An =(-1) ¥ Mu ;% i 1) Mo = ‘ - 1‘
=My =-(-2-0)=2
) Aoy = (-1 2+2 o 1 3
. 22 = (-1) M22 7 -1
Cofactors of the element 2 is
| - =-1-21=-992
12=01)"""Mpy 2+3 1
Agg = (- 12*3 by - ‘
- _M12 70
=-(D=1 s
Cofactors of the element - 1 is Ag = (- 13+! Mg, = g 2 .
Ay = (- 12+1
21 = (177" My, =12+15=27
= - My, 3+2 13
. Ag = (- 1)°7 M32=']4 6
Cofactors of the element - 2is =-6-12)=6
. 2 3+38 1 2
A = 1Py, Agy = 1" Myg= |y
= My =-5-8=-13
Hence, - 21 = Now, 5, 46, 85, 2, - 22, 14, 27,6, - 13 Ans.
. ’ Yy 4y = 2, 1 3 ‘3 4
: Ans, .
-ExGMple 1.2 W 1 Example 1.3. In the determinant | 3 2 -2| find the
Write all the cofuctors op |5 2 3| 1011
7 0 -7 ' cofactors of the elements 3, 3, - 1 and hence find the value of the deter-
) minant,

\
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N m;hmﬂ
A =2:-2
=1:- 1

EXERCISE l.tl rs of the fol) Ah\
s of all the cofacto 0 OWing

Find the valu Bl

h minants : (i) 2 -3
I 0‘ W -2
M |g 1|
‘ ‘ 1 -11
123 G | 1 23
i) |45 6 -1 =9 B
789
9. Find the cofactors of the elements of second columy, of th
determinant k-
12 3]
-4 36
27 4
3. Find the ratio of the cofactor and minor of 4 in the determi,
0 1-8 T
-1 0 4
2-1 0
1-32
4. In the determinant g -1 g , find the cofactors of the ele.
5

ments 1,- 3, 2 and hence find the value of the determ;
Answers on

L () 1,-20,1
(i) -2,-1,3,2
(iii) —3,6,-3,6,-12,6,—3 6,-3
(iv) 13,-5,-1,-1,3.4 -

’ ’ ’ » Yy ’_5’_
2, 373)_3 3 Z,f 1
4, -12,-2,23 and 4 . .

L7  PROPERT
IES OF DE
() If each cop TERMINANTS

stituent {
zero, then the valy In any row
e of th . i
00 ¢ determinant jg

or in any column is
zero.

|
\
|

|

Determinants 11

Then A = 0(bgey - byeg) - 0(ayey - agey) + 0laghy - azhy)
(i) If rows be changed into columns and columns into

rows, the value of the determinant remains unaltered.

ay by ¢
A= iy bz Cz
g b3 C3

Let

Then A = ay(bgcs — bacg) - bylages - agey) + cylazhz — azby) (1)
Now let the determinant obtained by changing the columns
into rows and rows into columns be A’, then

ay ay a3
A = |by by by
€1 C2 €3
or A = ay(byeg- bacg) —ag(biez—bacy) + as(bico— bocy)
= ay(bocg- bsco) — by(agcs— agey) + c1(agbz— asby) -..(i1)
. Then
A = A.

(iii) If two adjacent rows or columns of a determinant are
interchanged, the sign of the value of determinant is changed.
“lay by ¢
A = |ag b2 Co
as by c3

Let

Then A = a(bocg - bacy) — by(@acs — azc) + c1(aghs = agbs) ...(1)
Now let the determinant obtained by interchanging the first
and second rows be A". Then
ag by co
A =la, by ¢
ag by c3
= ag(bycg - bacy) — bolaycg — agey) + c2(a163 - asby)
= — [ay(bocg — byco) — by(@ocs — agce) + €1(agdg - asboy)l ...(11)
From equations (i) and (ii), we see that
AN=-A
Note : (i) The sign of a determinant will, or will not change according as there
will be an odd or even number of interchanges, on the whole, among its columns or rows.

(i) If a row or column of a determinant A is passed over n parallel rows or
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= afbe - %) - h(he - fg) + g(hf - bg)
= abe - af* - ch® + fgh + fgh - bg®
A = abce + 2fgh —afz—bgz—ch2

ymple 1.9. Prove that :

2a2 be ac+d
i“+ab o g | = 4a%%?
b BPibe &
o’ be  ac+e
Sol. Let A= 02+ab b2
ac
ab b2+bc c2
a
‘=abc a+b Z a;c
by C, 5 . b b+e o
-C,-
27y Clandca_,cs_cl_c2
a Cc-
= abe a+h _aa —gb
b g

16 Applie
- 'RS
=718
9 23 6
75
s
=-2(7XG—QX5)
=6
Ex pze18.Prove that :
l
‘Z b fl = abc +2fgh - afz'bg?"ChZ
1g fe
a h g
SolLLet A=|h b [
g fc
_|b f h b
A=alr c, gc+gg f

2

Proveq,

Determinants 17

a c-a O

=abc(-2b) la+b -a 1
b c 1
a c-a O
=abc(-2b)la -a-c O
b c 1
Expanding with respect to C3
_ c-al
=-2b (abc).l e cl
= - 2b (abe) [a(-a -c¢) —alc—a)l
= - 2ab (abc) [-a-c-c+al
= — 2ab (abc) (- 2c)
A= 4a2b2c2 Proved.
Example 1.10. Prove that :
a?+v°
— ¢ c
c
2,2 .
a Q_T_C_ a = 4abc
a
2 2
¢ +a
b b 3
a®+b? ¢
c
. 2 2
Sol.Let A= a bzc o
c +a
b b b

Taking common - L from Ry, L from Roand 7 b L from R3

2
a+ b2 _ c? )
= —b— a2 b2 + C2 a
b2 b? + a?
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<sary to Know the mean value of 5 ,
the mean value of the power generateq o

value of the products of current anq o T g 4
nstants during that period,
a series of values is foungq },

R
y add.

d dividing the sum by the number of
values together an o and number of Vah:,e asl‘;ismg ‘aﬁ:
vi()u‘.
b

i ., if the values are ¥1, % xg,
are ‘n’ then the mean,

If the value z; occurs f; times, the value x, occurs f tim
es,

the value z, occurs f, times, then the mean value o

o =f_11'1-*f2x_2+'“ +f;lxll =4§£
N
where, N =fi+fy+...+f, =Zf; (total frequency)
ILLUSTRATIVE EXAMPLES

Example 2.1. The values of the current (in a

. . m

period in a certain circuit are as follows : Peren g Fu
0,-18 -35-50,-61,-68 -61, - 50

35,50, 61,68, 61, 50,35, 18, 0 =00~ 36 ~T5 i
Find the mean value

of t ] g
A el f the current during the periog these

Sol. Obviously here sum of the values = © .
Number of values = 21
Therefore mean value of the current = -
21

Example 2.9, The yq) = O amperes Ans.

tive force ‘B’ i ues of electric
. ) C ‘ )
W a certain circujt gre as followsu ot C and eleSeu

(28)

Mean and Root Mean Square Value 29
Cramperes) | 0 | 16 | 28 | 85 | 40 | 62 | 40 | 55 | 28 | 16
Ewlty | 0 | 102 | 146 | 196 | 964 | 328 | 254 | 196 | 146 | 102

Find the mean value of the power over the period during which
these values were taken.

Sol. We know that
Power = electric current x electromotive force

Now, mean value of the power

LCE;
= , where n =10
Electric Current (C;) Electromotive Force (E;) C,E;
0 0 0
16 10-2 16:32
2:8 - 146 40-88
35 196 686
4.0 . 254 1016
52 32:8 170-56
4.0 254 101-6
35 196 i 686
2.8 146 ' 4088
16 10-2 16-32
n=10 3 C;E;=62536
Mean value of the power = Q%:ﬁ
= 62:536 watts Ans.

Example 2.3. Find the mean for the following data :

Height (in cm) 219 | 216 | 213 | 210 | 207 | 204 | 201 | 198 195
No. of Persons 2 4 6 100 | 11 7 5 4 1
Sol.
Height (x;) No. of Persons (f;) fix;
219 2 438
216 4 864
213 6 1278
210 10 2100
207 11 2271
204 7 1428
201 5 1005
198 4 792
196 1 195
£f;=50 3 f; x; = 10377
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SOLUTION OF /

1S,

tﬂlﬂmﬂﬂbﬂ"a A |
‘W&ﬂﬂbie Wﬁlﬁxown) isq ,

Qumm \: L;
ax? +b =o,,,0
ax’-_b

2
= -b/q

E; b/q x-iw
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. ) 8Clence !
presentation, analysis and interp of collection,
means quantitative information

or quantificati
findings. 4 cation of the facts and
According to Bowely “Statistics §
cs .
calculations and averages.” 18 the science of the

According to Louit
collection, classification and
for the explanation,

20.2

“Statistics is the science in which the
: tabulation of the numerical facts are done
information and comparison of any event.”
MEASURES OF CENTRAL TENDENCY

The number which represents a particular group of facts is
called the average of that fact. Average is also called statistical average
or mean. As the average of any group of facts cannot be a maximum
value or minimum value of the group hence, it should lie at about the
centre of the groups. The special feature about a mean is that most of
the members of that group are concentrated around the mean. Due to
this reason only mean is called the measures of central tendency.
Generally there are following three types of measures of central
tendencies :

(i) arithmetic mean, (ii) mode,

(iii) median.

20.2.1 Arithmetic Average or Mean : Arithmetic mean of a group of

observations is the quotient obtained by dividing the sum of all the ob-
servations by their number. Thus arithmetic mean denoted by X or a.
Arithmetic mean are of following two types :

(i) simple arithmetic mean,
(ii) weighted arithmetic mean.

20.2.1.1 Merits of Arithmetic Mean : The main merits of arithmetic
mean are as follows :

(383)
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Variable(x) : & 10 18 r 25 30 35 40
Frequency() : 7 8 9 11 6 11 8 3
M SO nrl e hernk lh,ﬂ. ¥ s FRNY. 1o .4
X fo " A H T mg.‘
5 i 7
10 Sonkin b-ou
15 9 |
ik ;a‘. 1 ll "1 »‘-1"‘. )
2 PRI R T e
® n W
B B |
RSN RELIES AL T 1
40 2 : 80 .
If=51 — Ifx=1185
o Arithmetic mean, X = ‘“,;_T |

= 1—13—% 1991 ‘

- WWrMngmmethoda
_ Arithmetic mean, X = A+—@
whereA = Aﬁmedmean

dx =x-A= Deviation from assumed mean -
~ Example: Mtheanthmncmeanofthefollowlng‘ eries ;

3’\‘;‘ §

Heightinem  : 6565676869707172 3

No.ofplants : 1 4 5 7 1110 6 4 2
A Snl.lettheassumeﬂmeanA =69 dtald  Ananil (N
M@aw: No. of Plants f _.drz-x:A Y
65 1 =4 -4
66§ 4 -8 =12
567" 5 -2 , -10 : ' b
68 7 -1 -7 ) Short-cut
69 1 0 0 045 AR
70 10 1 10 Arithmet
71 6 2 12 -
72 4 3 w2 \
' 73 /2 Ty 8 1 Marks 'S
- Lazlzn o0 2dizs No.of Students
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. | B datacen s i 4
1ation of Arithmetic Megn
: : calev . . in a Inclusive Serieg .
988 Applied Mathematics (t‘i'()’n of arithmetic mean of inclusiye gorigy o u::' '
W8 ories.
= W . Beﬂe { /

Sol. Let the assumed mean A = 26 L’]] 1Y mple Find the arithmetic meqn from the following data -
Marks Midoalue s | Frequency/ | dx=x-A s F pas 1 20-29 30-39 4 '
0-10 5 Y - 20 ~140 (las Intervat y ~49 50-59 60-69
10 - 20 15 9 -10 e 90 F,.equeﬂcy 3 8 6 4 2
20 - 80 26 12 0 0 Let the assumed mean A = 445
30 - 40 35 8 10 80 sol. Midvalue requency Deviation
40 - 50 45 4 20 80 Tlos8 x f a”°“ fd

Lf=40 Efdx=-79 Wrual — 2480 10 -2 - 200
- S [ W 245 8 -10 -8
X=A+ 39
if 0-5 445 6 0 ¢
Bk 0 0-4 545 4 - s
= 25~ =25-175 0-59 o 2 0 ©
- 23_25 ‘60/69/ szw Ef&=«m
(iv) Calculation of Arithmetic Mean by Step Deviation — : X=A +§@
Method : Step deviation method is a very useful method of calculating . Arithmetic mean, & = if
arithmetic mean in case of class intervals are same. -200 5-667
& 2& = 445+ '—*T =445-
Arithmetic mean, X = A + 3f X1
! . = 3783
where,i = Class interval s : in Case of
. Aﬁthmgtlc M i »
- (vi) Calculation of istribution : Converting cumulative
i : Cumulative Frequeflcy. D.l le freq\lenq dist!ihuﬁnn :
Example : Find the arithmetic mean from the following data : frequency distribution into 2 mfnp 1ic mean from the following datd
Class Interval 0-5 5-10 10-15 15-20 20-25 Example : Find the st 00 150 200
Frequency 4 7 5 9 0 Marks Obtained 50
Sol. Let the assumed mean A = 12:5 and i = 5 (More than) s B 9 #
Clas, Midval F iati |
Irwerusal : > mq';ency f: '::‘TX u=% ;A fu No. of Students umed meanA = 1254.7
0-5 25 4 -10 2 g Sol. Let the ass Sl | x=x-A /f""/,
5-10 75 7 -5 -1 -1 Marks Obtained | Midvalue : f —w | o
10-15 125 5 0 0 0 (More Than) & "g‘o-:ﬁ/ 3 50 108
15-20 175 9 5 A o 0-50 25 76-55=21 "o -
20 - 25 225 0 1 2 % 50400 (0 55-40=15 50 ;‘g
If=25 = 125 -32=8 0t |
_ - Zfun=td 122_;22 175 M/l/z_ﬁ@—'
X=A+§2&xi 200 - 250 228 _y/
£ 2 — R ;%dx
™ =125+[=8)x5 X=4"3
(ZSJX \ ] &0=125+26.8',5
=125-1.2 [ = 135%780
=113 ——
: p— / s
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